Bank Clerk Mock-2. Solution

Powered By

GUPTA CLASSES
 WAY TO SUCCESS

(1-5) : Sitting arrangement

1.(3) Statement (3) is true.
2.(4) H is a Teacher
3.(2) D, Doctor is thrid to the left of Banker E.
4.(4) Doctor D, sits between F, Architect and A, Businessman.
5.(5) $\quad \mathrm{G}$ is a clerk.
6.(2) Only assumption II is implicit in the statement. Secretary is assigned the task assuming that he is well versed with the operations of Power point.
7.(5) Clearly both the assumptions are implicit in the statement.
8.(1) Only assumption I is implicit in the statement.
9.(4) None of the assumptions is implicit in the statement.
10.(5) Clearly , both the assumption is implicit in the statement.
11.(5) Statement (5) would strengthen the author's argument.
12.(3) It is clear from the paragraph that the negative effect of teachniques of green revolution were not anticipated in the beginning.
13.(4) Cases of chemical poisoning would increase substantially.
14.(5) $J>-K>L=M>-N$
$J>M$ and $N<K$
15.(2) $A>B \geq C>D=F$
$B>D$ and $C>F$
$A<B<C=D>F$
$D \geq B$ and $C>F$

16-20.

Row-2
16.(2) To persons - A and C - are seated between B and D.
17.(1) V and B are opposite diagonally. Therfore, P is related to F.
18.(4) V sits at one of the extreme ends of the line.
19.(2) V and S are at extreme ends of the Row-1
20.(5) T faces B .

21-27.

21.(4) Except in LQ, in all other there is a gap of one bottle.
22.(1) Chemical L is in Pink bottle.
23.(3) P - Green is correct.
24.(3) Chemical Q is in Violet bottle.
25.(2)

26.(2) Chemical N is in Red bottle.
27.(1) Chemical P is kept in the bottle at the extreme right.
(28-35):
After careful analysis of the given input and various steps of rearrangement. it is evident that the numbers are rearranged in the middle in descending order and words are arranged in alphabetical order from the left and right. The words beginning with vowels are rearranged from the left in alphabetical order and the words beginning with consonants are rearranged from the right in the reverse alphabetical order.
(28-32) :
Input : unique 84 can 77 open 86 quick 13 base 53 amiss 11 equal 98 start
Step I : amiss unique 84 can 77 open 8613 base 5311 equal 98 quick start
Step II : amiss equal unique 8477 open 8613 base 531198 can quick start.
Step III : amiss equal open unique 84778613 531198 base can quick start.
Step IV : amiss equal open unique 98847786 13531198 base can quick start.
Step V : amiss equal open unique 98868477 86135311 base can quick start.
Step VI : amiss equal open unique 98868477 531311 base can quick start.
28.(5) None of these
29.(4) 98 would be fifth from the right in step III.
30.(1) Option (1) is the last step.
31.(5) Six steps
32.(4) It is step IV
(33-35):
Step I : (C) arrival 164428 on 66 finish match
Step II: (A) arrival on 16442866 finish match
Step III :(E) arrival on 66164428 finish match
Step IV :(D) arrival on 66441628 finish match
Step V : (B) arrival on 66442816 finish match
33.(1) $\quad A$ is step II.
34.(5) E is the step III
35. C
36.C. This is an alternating subtraction series in which 2 is subtracted twice, then 3 is subtracted once, then 2 is subtracted twice, and so on.
37.E. This simple addition series adds 4 to each number to arrive at the next.
38.B.This is an alternating addition and subtraction series, in which the addition of 4 is alternated with the subtraction of 3 .
39.E.This is an alternating subtraction series, which subtracts 5 , then 2 , then 5 , and so on.
40.C. This is an alternating addition series, with a random number, 35 , interpolated as every third number. The pa ttern of addition is to add 2 , add 5 , add 2 , and so on. The num

Quantitative Aptitude

81.(1) $3463 \times 295-18611=?+5883$

$$
1021585-18611=?+5883
$$

$1002974=?+5883$
? = 1002974-5883

$$
=997091
$$

$$
\begin{equation*}
\left(2^{3}\right)^{3} \div\left(2^{4}\right)^{2} \times 2^{5}=\frac{2^{? 4}}{\left(2^{2}\right)^{2}} \tag{3}
\end{equation*}
$$

$$
2^{9} \div 2^{8} \times 2^{5} \times 2^{4}=2^{?-4}
$$

$$
\left[\mathrm{a}^{m} \times \mathrm{a}^{n}=\mathrm{a}^{m+n}\right]
$$

$$
\frac{2^{9} 2^{5} 2^{4}}{2^{2}} 2^{? 4}
$$

$$
2^{9+5+4-8}=2^{?-4}
$$

$$
2^{10}=2^{?-4}
$$

$$
\left[a^{m} \div a^{n}=a^{m-n}\right]
$$

$$
?-4=10
$$

$$
?=10+4=14
$$

83.(4)

$$
\begin{aligned}
? & =\frac{28}{65} \quad \frac{195}{308} \quad \frac{44}{39} \quad \frac{5}{26} \\
& =\frac{4}{13} \quad \frac{5}{26} \quad \frac{8}{26} \quad \frac{5}{26} \quad \frac{13}{2}
\end{aligned}
$$

84.(3) $\quad ?=(3 \sqrt{8}) \quad \sqrt{8} \quad(8 \sqrt{8} 7 \sqrt{8}) 98$
$=4 \sqrt{8} \times 15 \sqrt{8}-98=60 \times 8-98$ $=480-98=382$

A PREMIER INSTITUTE FOR MBA-CAT/MCA/BANK P.O. \& SSC ENTRANCE ACADEMY

GUPTA

Center I. Agarsen Plaza, Near Nai Sarak, Garh Road, Meerut
ASSES Center II. Ist Floor, Utsav Complex, Shivaji Road, Near N.A.S. College, Meerut
CLASSES Center-III. Ilnd Floor, Star Plaza, Begum Bridge Road, Meerut
85.(2) $\sqrt{11449} \times \sqrt{6241}-(54)^{2}$

$$
=\sqrt{?}+(74)^{2}
$$

$$
107 \times 79 \quad 2916=\sqrt{?}+5476
$$

$$
8453 \quad 2916 \quad 5476=\sqrt{?}
$$

$$
\sqrt{?}=61 \quad ?=61 \times 61=3721
$$

86.(3) ?

$$
\begin{aligned}
& 4330 \times \frac{40}{100}+5000 \times \frac{59}{100} \\
& 1732+2950 \quad 4682 \\
& \text { Required answer }=4700
\end{aligned}
$$

87.(5)? $\quad 44000 \div 2100 \times 400 \quad \frac{44000}{2100} \times 400$ 8380
88.(2) $?=\frac{\sqrt{3178} \sqrt{330}}{\sqrt{360}}$

$$
\frac{56 \quad 36}{19} 106
$$

Required answer = 110
89.(5) $\sqrt[3]{4663}+349=? \div 21.003$
$17+349=? \div 21$
$366 \quad \frac{?}{21}$
? 366×217686
Required answer $=7680$
90.(1) $\frac{5682}{63} \times 36=? \times 19$

$$
?=\frac{5682 \quad 36}{6319} \quad 170
$$

91.(4) The pattern of the number series is:
$7 \times 2 \quad 2=12$
$12 \times 4 \quad(2+6)=48 \quad 8=40$
$40 \times 6 \quad(8+10)=240 \quad 18=222$
$222 \times 8 \quad(18+14)=1776 \quad 32$
$=17441742$
$\begin{aligned} 1744 \times 10 \quad(32+18) & =17440 \quad 50 \\ & =17390\end{aligned}$
92.(3) The pattern of the number series is:
$6 \times 7+7^{2}=42+49=91$
$91 \times 6+6^{2}=546+36=582 \quad 584$
$582 \times 5+5^{2}=2910+25=2935$
$2935 \times 4+4^{2}=11740+16=11756$
$11756 \times 3+3^{2}=35268+9=35277$
93.(5) The pattern of the number series is :
$9050 \quad 15^{3}=9050 \quad 3375=5675$
$5675 \quad 13^{3}=5675 \quad 2197=3478$
$3478 \quad 11^{3}=3478 \quad 1331=2147$
$2147 \quad 9^{3}=2147 \quad 729=1418$
$1418 \quad 7^{3}=1418 \quad 343 \quad 1075 \quad 1077$
94.(4) The pattern of the number series is :
$1=1$
$2^{2}=4$
$3^{3}=27 \quad 25$
$4^{4}=256$
$5^{5}=3125$
$6^{6}=46656$
95.(2) The pattern of the number series is:

$$
\begin{aligned}
& 8424 \div 2=4212 \\
& 4212 \div 2=2106 \\
& 2106 \div 2=1053 \quad 1051 \\
& 1053 \div 2=526.5 \\
& 526.5 \div 2=263.25
\end{aligned}
$$

96.(1) Let the number of trickes of each value be x.
$55 x+85 x+105 x=2940$
$245 x=2940$
$x=\frac{2940}{245}=12$
97.(2) \quad Rate $=\frac{\text { S.I. } 100}{\text { Principal Time }}$
$=\frac{10800 \quad 100}{22500 \quad 4}=12 \%$ perannum
$\mathrm{Cl}=\mathrm{P} \quad 1 \quad \frac{\mathrm{R}}{100}^{\top} \quad 1$
$=22500 \quad 1 \frac{12}{100}^{2} 1$
$=22500 \quad \frac{28}{25}^{2} 1$
$=22500 \quad \frac{784 \quad 625}{625}$
$=\frac{22500159}{625}=\cdot 5724$
98.(5) Jahnavi's present age $=33 \quad 9=24$ yrs.

Aarti 's present age $=24 \quad 9=15 \mathrm{yrs}$.
Now, Aarti : Savita
$=5: x$
$=15: 3 x$
Savita's present age $=3 \quad x$ yrs.
$3 x \quad 15=24$
$3 x=24+15=39$
$x=\frac{39}{3}=13$
99.(2) Gayatri's monthy income $=\quad \cdot \frac{32000 ~ 15}{100}$
$=$ - 36800
Ruby's annual income $=\quad \cdot(12 \times 3 \times 36800)$ = - 1324800
100.(4) Number of males in company $=\frac{4800 ~ 45}{100}$

$$
=2160
$$

Number of males younger than 25 yrs.

$$
=\frac{216040}{100}=864
$$

A PREMIER INSTITUTE FOR MBA-CAT/MCA/BANK P.O. \& SSC ENTRANCE ACADEMY

Center I. Agarsen Plaza, Near Nai Sarak, Garh Road, Meerut
Center II. Ist Floor, Utsav Complex, Shivaji Road, Near N.A.S. College, Meerut
CLASSES
Center-III. IInd Floor, Star Plaza, Begum Bridge Road, Meerut
101.(3) C.P. of one pencil box $=7+22+14=\quad 43$ Total amount paid by Harshita
$=\cdot(20 \times 7+8 \times 22+6 \times 175+7+43)$ $=\cdot(140+176+1050+301)$ = - 1667
102.(5) Difference $=48+59+67-44-45-61=24$

$$
\text { Correct average }=56+\frac{24}{24}=57
$$

103.(1) If the maximum marks of examination be x, then
$\frac{x 45}{100}=280+80=360$
$x=\frac{360100}{45}=800$
30% of 800
$=\frac{800 \quad 30}{100}=240$
= Mininum marks to pass for girls
Required difference $=240 \quad 108=132$
104.(5) Second number $=2400 \times \frac{1}{4}=600$

If the first number be $\quad x$, then

$$
\begin{aligned}
& x \times \frac{6}{11} \\
& 600 \times \frac{22}{100}=132 \\
& x=\frac{13211}{6}=242 \\
& 45 \% \text { of } 242 \\
& =242 \times \frac{45}{100}=108.9
\end{aligned}
$$

105.(4) Total marks obtained by seema

$$
=\frac{87556}{100}=490
$$

$$
\text { Total marks obtained by Nitya }=\frac{87592}{100}
$$

$$
=805
$$

$$
\text { Required average marks }=\frac{490 \quad 805634}{3}
$$

$$
=\frac{1929}{3}=643
$$

106.(5) Total number of marbles in the urn
$=4+5+2+3=14$
Total possible outcomes $=$ selection of 2 marbles out of 14 marbles

$$
={ }^{14} C_{2}=\frac{14 \quad 13}{12}=91
$$

Favourable number of cases $=$
${ }^{2} \mathrm{C}_{2}+{ }^{2} \mathrm{C}_{1} \times{ }^{12} \mathrm{C}_{1}$

$$
=1+2 \times 12=25
$$

$$
\text { Required probability }=\frac{25}{91}
$$

107.(2) Total possible outcomes $={ }^{14} \mathrm{C}_{3}$

$$
=\frac{141312}{123}=364
$$

When no marble is yellow, Favourable number of cases $={ }^{11} \mathrm{C}_{3}$

$11 \quad 10 \quad 9$
123

Probability that no marbles is yellow $=\quad \frac{165}{364}$
Required probablity $=1-\quad \frac{165}{364}=\frac{364165}{364}$

$$
=\frac{199}{364}
$$

108.(3) Total possible outcomes $={ }^{14} \mathrm{C}_{8}$
$={ }^{14} C_{6}\left[{ }^{n} C_{r}={ }^{n} C_{n-r}\right]$
$=\begin{array}{lllllll}14 & 13 & 12 & 11 & 10 & 9\end{array} \begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}=3003$
Favourable number of cases
$={ }^{4} \mathrm{C}_{2} \times{ }^{5} \mathrm{C}_{2} \times{ }^{2} \mathrm{C}_{2} \times{ }^{3} \mathrm{C}_{2}$
$=6 \times 10 \times 1 \times 3=180$
Required probability $=\frac{180}{3003}=\frac{60}{1001}$
109.(5) Total possible outcomes $={ }^{14} \mathrm{C}_{3}$
$=\frac{\begin{array}{lll}141312 \\ 12 & 3\end{array}=364}{}$
No ball is green.
Total favourable outcomes =
selection of 3 marble out 5 blue. 2 red
and 3 yello marbles $={ }^{10} \mathrm{C}_{3}=\frac{10 \quad 9 \quad 8}{12}$

$$
=120
$$

Required probability $=\frac{120}{364}=\frac{30}{91}$
110.(1) Total possible outcomes $={ }^{14} \mathrm{C}_{4}$

$$
=\frac{141312 \quad 11}{141013}=1001
$$

Favourable outcomes
$={ }^{5} \mathrm{C}_{2} \times{ }^{2} \mathrm{C}_{2}=10 \times 1=10$
Required probablity $=\frac{10}{1001}$
111.(5) Number of men visiting supermarket D

$$
=\frac{5550041}{100}=22755
$$

Total number of people visiting all the super market together $=34560+65900$
$+45640+55500+42350+59650$
$=303600$
Required percentage $=\frac{22755}{303600} \times 100$

A PREMIER INSTITUTE FOR MBA-CAT/MCA/BANK P.O. \& SSC ENTRANCE ACADEMY

GUPTA Center I. Agarsen Plaza, Near Nai Sarak, Garh Road, Meerut
CLASSES Center II. Ist Floor, Utsav Complex, Shivaji Road, Near N.A.S. College, Meeru
CLASSESS Center-III. IInd Floor, Star Plaza, Begum Bridge Road, Meerut
112.(4) Number of children visiting super-

$$
\text { market } C=\frac{4564020}{100}=9128
$$

Number of children visiting super-market F

$$
=\frac{5965014}{100}=8351
$$

$$
\begin{aligned}
\text { Required percentage } & =\frac{9128}{8351} \times 100 \\
& =109.30
\end{aligned}
$$

113.(3) Total number of children visiting supermarkets B and D together

$$
=\frac{6590020}{100}+\frac{5550033}{100}=13180+18315
$$

$$
=31495
$$

114.(1) Total number of women

$$
=\frac{3456055}{100}+\frac{6590043}{100}+\frac{4564045}{100}
$$

$$
+\frac{5550026}{100}+\frac{4235070}{100}+\frac{5965062}{100}
$$

$$
=19008+28337+20538+14430+29645
$$

$$
+36983=148941
$$

$$
\text { Required average }=\frac{148941}{6}=24823.5
$$

115.(5) Required ratio $=19008: 20538$

$$
=1056: 1141
$$

116.(3) Difference of corresponding angles

$$
\begin{aligned}
= & (122.4+21.6-79.12-14.4)^{\circ}=50.4^{\circ} \\
& 360^{\circ}=6800
\end{aligned}
$$

$$
50.4^{\circ}=\frac{6800}{360} \times 50.4=952
$$

117.(1) Required ratio $=21.6: 79.2=3: 11$
118.(4) Required percentage $=\frac{64.821 .6}{360} \times 100$

$$
=24 \%
$$

119.(2) Required percentage $=\frac{14.4}{122.4} \times 100=11.76$
120.(1) Number of students two perfer beverages

$$
\begin{aligned}
B \text { and } E \text { together } & =\frac{57.664 .8}{360} \times 6800 \\
& =\frac{122.46800}{360}=2312
\end{aligned}
$$

121. (2) Total marks of Ameesha $=\frac{15066}{100}+75$

$$
\begin{aligned}
& \quad+\frac{15088}{100}+\frac{56125}{100}+\frac{5675}{100}+45 \\
& =99+75+132+70+42+45=463
\end{aligned}
$$

122.(3) Required percentage $=\frac{88}{76} \times 100$
115.79
123.(1) Average of percentage of marks in compensation management

$$
=\frac{\begin{array}{llllll}
88 & 84 & 78 & 96 & 68 & 50
\end{array}}{6}=\frac{464}{6} \%
$$

$$
\text { Required average marks }=150 \times \quad \frac{464}{600}
$$

$$
=116
$$

124.(4) Total marks obtained by :

Ameesha 463
Rakshit $123+76+126+120+69+44=$ 558
Garvita $135+88+144+95+63+43=$ 568
125.(2) Rakshit (consumer behaviour and service marketing) and Garima (strategic management brand management and compensation management)
126.(4) Number of students who opted for all three subjects in $2009=45000$
Number of boys $=\frac{4500062}{100}=27900$ We don't know the number of girls in mathematics.
127.(2) Required percentage

$$
=\frac{40000 \quad 62}{455030} 100 \quad 9
$$

128.(5) Required number of students $=(5+35$

$$
+15+15+20+5) \times 1000=95000
$$

129.(4) Required percentage $=\begin{array}{lll}15 \quad 30 \\ 55 ~ 88\end{array} 100$

$$
=\frac{45}{140} \times 100=32
$$

130.(1) Required ratio $=(25+30):(5+20)$

$$
=55: 25=11: 5
$$

1	C	51	A	101	C	151	D
2	D	52	B	102	E	152	A
3	B	53	C	103	A	153	B
4	D	54	B	104	E	154	A
5	E	55	D	105	D	155	A
6	B	56	E	106	E	156	E
7	E	57	C	107	B	157	E
8	A	58	B	108	C	158	E
9	D	59	A	109	E	159	B
10	E	60	B	110	A	160	A
11	E	61	E	111	E	161	C
12	C	62	D	112	D	162	D
13	D	63	D	113	C	163	E
14	E	64	C	114	A	164	C
15	B	65	E	115	E	165	D
16	B	66	C	116	C	166	B
17	A	67	D	117	A	167	B
18	D	68	C	118	D	168	C
19	B	69	C	119	B	169	C
20	E	70	C	120	A	170	B
21	D	71	C	121	A	171	D
22	A	72	A	122	A	172	C
23	C	73	C	123	C	173	A
24	C	74	A	124	C	174	D
25	B	75	B	125	C	175	E
26	B	76	E	126	B	176	C
27	A	77	D	127	A	177	E
28	B	78	A	128	A	178	A
29	D	79	B	129	B	179	B
30	D	80	D	130	B	180	D
31	B	81	A	131	B	181	C
32	D	82	C	132	A	182	A
33	B	83	D	133	A	183	B
34	B	84	C	134	D	184	D
35	D	85	B	135	B	185	E
36	C	86	C	136	C	186	D
37	E	87	E	137	A	187	A
38	B	88	B	138	C	188	B
39	E	89	E	139	A	189	C
40	C	90	A	140	C	190	A
41	E	91	D	141	A	191	A
42	D	92	C	142	C	192	E
43	B	93	E	143	B	193	B
44	B	94	D	144	B	194	A
45	A	95	B	145	C	195	C
46	E	96	A	146	B	196	A
47	B	97	B	147	A	197	E
48	C	98	E	148	C	198	E
49	D	99	B	149	E	199	C
50	B	100	D	150	B	200	D

